References

Publications referencing AeroFrame

[Dett19]Dettmann, A.: Loosely coupled, modular framework for linear static aeroelastic analyses. Master Thesis (2019). KTH Royal Institute of Technology. http://kth.diva-portal.org/smash/record.jsf?pid=diva2:1360722

Theoretical background

[Brau07]Braun, C.: Ein modulares Verfahren für die numerische aeroelastische Analyse von Luftfahrzeugen. Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Dissertation, 2007. http://publications.rwth-aachen.de/record/50006
[MGDW18]Maierl, R. ; Gastaldi, A. ; Daoud, F. ; Walther, J.N. ; Ciampa, P.D. ; Jungo, A. ; Zhang, M.: Aero-Structural Optimization of a Male Configuration in the AGILE MDO Framework. ICAS 2018, Belo Horizonte, Brazil, 2018 https://www.agile-project.eu/cloud/index.php/s/p55SINI9eJBJYoP
[Bouc03]Boucke, A.: Kopplungswerkzeuge für aeroelastische Simulationen. Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Dissertation, 2003. http://publications.rwth-aachen.de/record/59402
[FePF01]Felippa, C.A. ; Park, K.C. ; Farhat, C.: Partitioned analysis of coupled mechanical systems. In: Computer Methods in Applied Mechanics and Engineering 190 (2001), No. 24, 3247–3270. http://dx.doi.org/10.1016/S0045-7825(00)00391-1 – ISSN 0045–7825
[RBBW10]Reimer, L. ; Braun, C. ; Behr, M., Wellmer, G. ; Ballmann, J. ; Schröder, W. (Ed.): Development of a Modular Method for Computational Aero-structural Analysis of Aircraft. In: Summary of Flow Modulation and Fluid-Structure Interaction Findings: Results of the Collaborative Research Center SFB 401 at the RWTH Aachen University, Aachen, Germany, 1997–2008. Vol. 109. Springer Berlin Heidelberg, 2010. – pp. 205–238. – ISBN 978–3–642–04087–0
[Megs16]Megson, T.H.G.: Aircraft Structures for Engineering Students. 6th edition. Oxford, England; Waltham, Mass. : Butterworth-Heinemann, 2016 (Elsevier Aerospace Engineering Series). – ISBN 0–08–096906–2
[ToWi09]
  1. Torenbeek ; H. Wittenberg: Flight physics – Essentials of Aeronautical Disciplines and Technology, with Historical Notes. Dordrecht; London : Springer, 2009. – ISBN 1–4020–8664–4
[RoWH14]Rossow, C.-C. ; Wolf, K. ; Horst, P. (Ed.): Handbuch der Luftfahrzeugtechnik. München : Hanser, 2014. – ISBN 978–3–446–42341–1
[WGJZ18]Walther J.-N. ; Gastaldi, A. ; Jungo, A. ; Zhang, M. ; Maierl, R.: Integration Aspects of the Collaborative Aero-Structural Design of an Unmanned Aerial Vehicle. DLRK 2018, Friedrichshafen, Germany, 2018 https://www.agile-project.eu/cloud/index.php/s/1LLvkJlcrxcazSF

Other references

[AgOp19]AGILE, Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts: Use Case – MALE UAV. 2019 https://www.agile-project.eu/use-case-male-uav/ ; Accessed: 2019-05-15
[Seyw11]Seywald, Klaus: Wingbox Mass Prediction considering Quasi-Static Nonlinear Aeroelasticity, Technische Universität München, KTH Royal Institute of Technology, Diploma thesis, 2011. http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A474633&dswid=-3704
[Seyw16]Seywald, Klaus: Impact of Aeroelasticity on Flight Dynamics and Handling Qualities of Novel Aircraft Configurations. München, Technische Universität München, Dissertation, 2016. https://mediatum.ub.tum.de/?id=1296378
[CMPW02]Cook, R.D. ; Malkus, D.S. ; Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis. 4. New York : Wiley, 2002. – ISBN 978–0–471–35605–9
[Sund10]Sundström, B. (Ed.): Handbook of Solid Mechanics. KTH Royal Institute of Technology, Department of Solid Mechanics, 2010. – ISBN 978–91–972860–4–6
[BoEl16]Borglund, D. ; Eller, D.: Aeroelasticity of Slender Wing Structures in Low-Speed Airflow. Lecture Notes. KTH Royal Institute of Technology; Department of Aeronautical and Vehicle Engineering, 2016. ISSN 1651–7660